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Abstract

Since wavelets form a representation of the Poincar_ group, it is possible to construct

a localized superposition of light waves with different frequencies in a Lorentz-covariant

manner. This localized wavelet satisfies a Lorentz-invariant uncertainty relation, and also

the Lorentz-invariant Parseval's relation. A quantitative analysis is given for the difference

between photons and localized waves. It is then shown that this localized entity corresponds
to a relativistic photon with a sharply defined momentum in the non-localization limit.

Waves are not particles. It is confirmed that the wave-particle duality is subject to the
uncertainty principle.

1 Introduction

We propose a quantitative approach to the photon localization problem. Photons are relativistic

particles requiring a covariant theoretical description. Classical optics based on the conventional

Fourier superposition is not covariant under Lorentz transformations [1]. On the other hand,

wavelets can be regarded as representations of the Lorentz group [2, 3, 4]. In Ref. [1], we

discussed the difference between waves and wavelets without mentioning the word "wavelet." We

have seen there that the lack of covariance of light waves is due to the lack of Lorentz invariance

of the integral measure. We concluded there that an extra multiplicative factor is needed to make

the Fourier optics covariant. We would like to point out that this procedure corresponds to the

wavelet formalism of wave optics.

In spite of the covariance of wavelets, photons are not wavelets. Instead, we shall make a

quantitative analysis of the difference between these two clearly defined physical concepts. The

advantage of this quantitative approach is that we can see how close they are to each other. In

this way, we can assert that photons are waves with a proper qualification.

Another convenient feature of the localized wavelet representation is that it is possible to

introduce an cut-off procedure in a covariant manner, so as to preserve the information given in
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the distribution. By introducing the concept and word "window" [5, 6, 7, 8], it is possible to define

the region in which the frequency distribution is non-zero. We can then compare the "windowed"

wavelet to the photon operators in quantum field theory to pinpoint the difference between the

photons and wavelets.

2 Localized Light Wavelets

For light waves, we start with the usual expression

1

F(z,t) = _ / g(k)ei(kz-_t)dk . (1)

Unlike the case of the Schr6dinger wave, w is equal to k, and there is no spread of wave packet.

The velocity of propagation is always that of light. We might therefore be led to think that the

problem for light waves is simpler than that for nonrelativistic Schr6dinger waves. This is not the

case. In Ref.[1], we have considered the following questions.

(1). We would like to have a wave function for light waves. However, it is not clear which

component of the Maxwell wave should be identified with the quantal wave whose absolute square

gives a probability distribution. Should this be the electric or magnetic field, or should it be the

four-potential?

(2). The expression given in Eq.(1) is valid in a given Lorentz frame. What form does this equation
take for an observer in a different frame?

(3). Even if we are able to construct localized light waves, does this solve the photon localization

problem?

(4). The photon has spin 1 either parallel or antiparallel to its momentum. The photon also has

gauge degrees of freedom. How are these related to the above-mentioned problems?

Even though light waves do not satisfy the Schr6dinger equation, the very concept of the super-

position principle was derived from the behavior of light waves. Furthermore, it was reconfirmed

recently that light waves satisfy the superposition principle [9]. It is not difficult to carry out a

spectral analysis on Eq.(1) and give a probability interpretation. The question then is whether

this probability interpretation is covariant. We addressed this question in Ref. [1]. We concluded

in effect that the localized light wave is covariant if we use the wavelet form. We regret however

that we were not aware of the word "wavelet" at that time. In this section, we shall translate

what we did in Ref. [1] into the language of wavelets.

The expression given in Eq.(1) is not covariant if g(k) is a scalar function, because the measure

dk is not invariant. If g(k) is not a scalar function, what is its transformation property? We shall

approach this problem using the light-cone coordinate system. We define the light-cone variables

as

= (z + 0/2, = (z - t). (2)
The Fourier-conjugate momentum variables are

k, = (k-w), k_ = (k +,;)/2. (3)

If we boost the light wave (or move against the wave with velocity parameter fl), the new coordinate
variables become

,,'= k: = K = (4)
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where

_,.,.= [(1+ _')/(1_ ,_)],/2 (5)

If we construct a phase space consisting of s and k, or u and k,,, the effect of the Lorentz boost will

simply be the elongation and contraction of the coordinate axes. If the coordinate s is elongated

by a+, then ko is contracted by a_ with a+a_ = 1.

In the case of light waves, ko vanishes, and k_ becomes k or w. In terms of the light-cone

variables, the expression of Eq.(1) becomes

( 1)'/'/.
F(u) = _/ Jg(k)¢k_dk (6)

We are interested in a unitary transformation of the above expression into another Lorentz frame.

In order that the norm

f Ig(k)12dk (7)

be Lorentz-invariant, F(u) and g(k)should be transformed like

F(u)---* v/-&-_F(a+u), g(k)--* y'-dSg(a_k). (8)

Then Parseval's relation:

f IF(u)l%., = f Ig(k)l'dk (9)

will remain Lorentz-invariant.

It is not difficult to understand why u in Eq.(2) and k = k= in Eq.(3) are multiplied by a+

and a_ respectively. However, we still have to give a physical reason for the existence of the

multipliers (a+)_/2 in front of F(u) and g(k). In Ref. [10], Kim and Wigner pointed out that

the multipliers in Eq.(8) come from the requirement that the Wigner phase--space distribution

function be covariant under Lorentz transformations [11, 7].

Let us illustrate this point using a Gaussian form. We can consider the g(k) function of the
form

(1___) 1,4g(k) = exp {-(k- p)2/2b} , (10)

which leads to the F(u) of the form

F(u) = exp(bu2/2)exp(ipu) , (11)

where b is a constant and specifies the width of the distribution, and p is the average momentum:

f klg(k)12dk
p = f ig(k)12dk (12)

Under the Lorentz boost according to Eq.(8), g(k) becomes

(-_)'/'vfdZ_exp{-o__(k-a+p)'/2b} . (13)
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Thus, according to the transformation law given in Eq.(8), the transformed F(u) becomes

r(u) = v/-a--;exp (b(a+u)2/2)exp(i(a+p)u). (14)

We note here that the average momentum p is now increased to a+p. The average momentum

therefore is a covariant quantity, and a_ can therefore be written as

= o/p , (is)
where a is the average momentum in the Lorentz frame in which a± = 1, and _/= 0.

As a consequence, in order to maintain the covariance, we can replace F(u) and g(k) by F'(u)

and g'(k) respectively, where

F'(u) = V/_P-F(u),

These functions will satisfy Parseval's equation:

/IF'(u)] 2du = ] Ig'(k)l 2dk

in every Lorentz frame without the burden of carrying the multipliers _ and Vcff-2-_.

simplify the above cumbersome procedure by introducing the form

1
a(u)- /g(k)e k dk

/-

(16)

(17)

We can

(18)

where the procedure for the Lorentz boost is to replace p by a+p, and k in g(k) by a_k. This is

precisely the wavelet form for the localized light wave, and this definition is consistent with the

form given in earlier papers on wavelets [2, 3].

3 Windows

There are in physics many distributions, and we have a tendency to choose "smooth" or analytic

functions to describe them. These functional forms usually extend from minus infinity to plus

infinity. However, the distribution function of physical interest is usually concentrated within a

finite interval. On the other hand, it is not uncommon in physics that mathematical difficulties

in theory come from the region in which the distribution function is almost zero and is physically

insignificant. Thus, we are tempted to ignore contributions from outside of the specified region.

This is called the "cut-off" procedure.

One of the difficulties of this procedure is that a good cut-off approximation in one Lorentz

frame may not remain good in different frames. The translational symmetry of wavelets allows us

to define the cut-off procedure which will remain valid in all Lorentz frames.
We can allow the function to be nonzero within the interval

a <_ x < a +w, (19)

while demanding that the function vanish everywhere else. The parameter w determines the size

of the window. The window can be translated or expanded/contracted according to the operation

of the affine group [8]. Indeed, it is possible to define the window in such a way that the boundary

condition be covariant, and the information contained in the window be preserved [8].
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4 Photon Localization Problem

The wavelet formalism allows the description of a localized wave function for light waves in a

Lorentz covariant manner with Lorentz-invariant normalization. We shall now examine how close

the wavelet can be to photons. First of all, it should be noted that there are no physical laws

which dictate the functional form for a(k) or 9(k). This depends on initial conditions. If we

choose an analytic function, this is purely for mathematical convenience. If we choose functions

which vanish near k = 0 and k greater than a certain value, this also satisfies our criterion for

mathematical convenience. Indeed, the concept of window plays a decisive role in this form of

localization.

In quantum electrodynamics, we start with the form

A(z,t) = ] _rwa(k)eqk*-_Odk. (20)

This is a covariant expression in the sense that the norm

/la(k)12dk2rcw (211

is invariant under Lorentz transformations, because the integral measure (1/w)dk is Lorentz-

invariant.

We are quite familiar with the expression of Eq.(1) for wave optics, and with that of Eq.(20) for

quantum electrodynamics. The wavelet form of Eq.(18) satisfies the same superposition principle

as Eq.(1), and has the same covariance property as Eq.(20). It is quite similar to both Eq.(1) and

Eq.(20), but they are not the same. The difference between F(u) of Eq.(1) and the wavelet G(u)

is insignificant. Other than the factor V_ where a has the dimension of the energy, the wavelet

G(u) has the same property as F(u) in every Lorentz frame [1]. However, the difference between

G(u) and A(u) is still significant.

It is possible to give a particle interpretation to Eq.(20) after second quantization. However,

A(z, t) cannot be used for the localization of photons. On the other hand, it is possible to give

a localized probability interpretation to F(z,t) of Eq.(1), while it does not accept the particle

interpretation of quantum field theory.

A(u) of Eq.(20) and G(u) of Eq.(18) are numerically equal if

a(k) = (22)

where the window is defined over a finite interval of k which does not include the point k = 0. It

is thus possible to jump from the wavelet G(u) to the photon field A(u) using the above equation.

However, the above equality does not say that a(k) is equal to g(k). The photon intensity dis-

tribution is not directly translated into the photon-number distribution. This is the quantitative

difference between wavelets and photons.

Of course, this difference becomes insignificant when the window becomes narrow. The nar-

rower window in k means a wider distribution of the wave in the u coordinate system. We

conclude therefore that photons become waves in non-localization limit. Particles are not waves.

The wave-particle duality is subject to the uncertainty principle. The relation given in Eq.(22),

together with the appropriate window, is a statement of this uncertainty relation.
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